User-related Assessment in interactIVe: From Simulator Studies to Field Studies

András Várhelyi, Lund University

interactIVe Final Event
Content

- Overview of interactIVe
- Overview on user-related studies
 - EMIC results
 - INCA results
 - SECONDS results

- Intended Usage of interactIVe functions
- Willingness to pay for interactIVe functions
- Conclusions
- Acknowledgements
The aim of the user-related assessment was to evaluate the systems’ effect on driver behaviour and their acceptance.

- Type of study is chosen depending on:
 - criticality of the relevant scenario (speeding vs. rear-end),
 - expected function reaction (warning vs. intervening),
 - activation point (TTC at warning / intervention).

Real traffic Test track Driving Simulator

Time point, at which the function becomes active
Overview on user-related studies

<table>
<thead>
<tr>
<th>Function</th>
<th>Demo</th>
<th>Test site</th>
<th>Test design</th>
<th>Test persons</th>
<th>Resp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMIC (CMS)</td>
<td>VW</td>
<td>Porriño</td>
<td>Driving Simulator study</td>
<td>59 persons from the public</td>
<td>CTAG</td>
</tr>
<tr>
<td>EMIC (ESA)</td>
<td>CONTI</td>
<td>Porriño</td>
<td>Driving Simulator study</td>
<td>68 persons from the public</td>
<td>VTEC</td>
</tr>
<tr>
<td>INCA (SIA & RECA)</td>
<td>Ford</td>
<td>Aachen</td>
<td>Driving on a test track.</td>
<td>25 persons from the public</td>
<td></td>
</tr>
<tr>
<td>INCA (RoRP & LCCA)</td>
<td>VCC</td>
<td>Hällered</td>
<td>Driving on a test track</td>
<td>10 persons (employees of VCC)</td>
<td></td>
</tr>
<tr>
<td>INCA (OVCA, SIA RECA, RoRP)</td>
<td>VTEC</td>
<td>Göteborg</td>
<td>Driving Simulator study</td>
<td>31 persons (prof. truck drivers)</td>
<td></td>
</tr>
<tr>
<td>SECONDS (eDPP)</td>
<td>BMW</td>
<td>Aachen</td>
<td>Video presentation, two focus groups</td>
<td>17 persons from the public</td>
<td></td>
</tr>
<tr>
<td>SECONDS (CS & CSW)</td>
<td>CRF</td>
<td>Turin</td>
<td>Driving without- and with the system on public roads</td>
<td>24 persons (employees of CRF)</td>
<td>LUND</td>
</tr>
<tr>
<td>SECONDS (CS & CSC)</td>
<td>FFA</td>
<td>Aachen</td>
<td>Driving on a test track, two focus groups</td>
<td>19 persons from the public</td>
<td></td>
</tr>
<tr>
<td>SECONDS (SC & SS)</td>
<td>VCC</td>
<td>Hällered</td>
<td>Driving on a test track</td>
<td>10 persons (employees of VCC)</td>
<td></td>
</tr>
</tbody>
</table>
EMIC – Collision Mitigation System (CMS) & Emergency Steer Assist (ESA)

CTAG’s Driving Simulator (59 and 69 participants)
• Shorter reaction time with systems
• Useful and Satisfying (Collision Mitigation System - CMS)
• Useful to improve safety (Emergency Steer Assist - ESA)
• Main use on motorways (Emergency Steer Assist - ESA)
INCA – RoRP, SIA, RECA, OVCA

VTEC Fixed-base driving simulator, 31 participants

Run-off Road Prevention (RoRP)
• Reaction time is shorter with RoRP
• Reaction is stronger with the RoRP
• High acceptance and usability

Side Impact Avoidance (SIA)
• No difference in reaction time/strength
• Fewer collisions with SIA (9 vs. 14)
• High acceptance and usability

Rear-End Collision Avoidance (RECA)
• No difference in reaction time
• Only 1 collision with RECA vs. 12 without
• High acceptance and usability

Oncoming Vehicle Collision Avoidance (OVCA)
• Harder braking with OVCA
• Slightly lower acceptance

Acceptance – van der Laan scale

FFA: Ford; VTEC: Volvo Truck; VCC: Volvo Car
Field test on public roads, 24 test persons
Driving without- and with the system, within subjects design

Effects:
+ Curve speed warnings gave the expected effect
+ Better speed adaptation to the speed limits and situations
+ Less dangerous lane changes with the system active
- Slightly more late adaptations of speed before intersections and obstacles

Opinions:
• Useful
• Blind spot warning especially useful in the overtaking process
• Appreciated not giving information all the time
• The test persons would use interactIVe functions frequently
• Drivers would use the function more on motorways and less in urban regions – exception CMS, eDPP
Willingness to pay for interactIVe functions

• The test persons are willing to pay more for functions that intervene than for functions which only warn
Recommendations

• Recommendations for functions
 • The system should **not warn** the driver **too often**, but also not too late.
 • In an emergency situation, **visual information** should be given and be **shown for enough time**, so the driver finds out the **reason** for the haptic or acoustic warning.
 • The **visual display** for the forward collision warning should be **put as high as possible**.
 • An additional **haptic warning** for the blind spot warning would be **preferable**
 • Safety belt tensioning should **not** be used for **speed or forward collision warning**.
 • Some **training of the warnings** would be **useful** before using the system, at least to get to know the different warning signals in order not to be surprised when they come the first time. (Introduction by the car seller or a demo-mode should be available, so that the warnings can be shown while the vehicle stands still)

• Recommendations for user assessment:
 • The system to be assessed in user-related tests should be **completely flawless**.
 • The **final test** should be in real life setting, when **naïve drivers** drive on **public roads**.
 • The test driver selection should include the **population of elderly drivers** (65+) as this group of drivers are under a **strong increase** and they will have an important role in defining the usability of newly developed ADASs.
Conclusions

- 9 studies with over 250 participants in driving simulator, on test track and in real traffic, focus groups, questionnaires
- Expected behavioural effects (+) few compensatory (-) effects
- The test persons found the systems useful
- Recommendations for improvements from users

Acknowledgement:
- interactIVe “Evaluation and Legal Aspects” team
- Demonstrator owners
 BMW, Continental, CRF, Ford, Volvo Car, Volvo Truck, Volkswagen
Thank you.

András Várhelyi
Professor Lund University
andras.varhelyi@tft.lth.se