interactIVe IP: Perception platform and modules

Angelos Amditis, ICCS
19th ITS-WC-SIS76: Advanced integrated safety applications based on enhanced perception, active interventions and new advanced sensors

Vienna, October, 26 2012
Agenda

1. Introduction
 1.1. interactIVe project
 1.2. Environment perception in interactIVe

2. Perception Platform
 2.1. System architecture
 2.2. Perception Horizon
 2.3. Perception Modules (+ short duration demos)

3. Conclusions & future work
interactlVe project

- Development & evaluation of next generation safety systems providing continuous support and utilizing active intervention

Current systems:
- independent functions
- multiple expensive sensors
- unnecessary redundancy

interactlVe:
- vehicle components shared among various safety systems
- integrating applications upon a common perception framework
- discrete architectural layers common to all applications

October 26, 2012 – 19th ITS World Congress
Environment perception in interactlVe

• Fusion of information from heterogeneous sources to provide a holistic environment perception
 • Perception sensors: radars, cameras, laserscanners etc.
 • Digital maps
 • Wireless communication (V2X)

• Design of a common perception framework for multiple safety applications

• Advanced research on enhancing the electronic safety zone surrounding vehicles:
 - Sensor refinement
 - Object refinement
 - Situation refinement

➢ Active intervention poses “hard” real-time requirements for data processing & fusion modules
Perception Platform - the concept

- Reference implementation

- Common *interface structure* for every sensor type or information source

- Different sensor types and products attached based on the *plug-in concept*

- Development of a variety of *perception modules*, e.g.
 - object perception & classification
 - lane detection & road geometry extraction

- Unified Output: *Perception Horizon*
Perception Platform - architecture overview

Input Manager

- ADASIS v2 Horizon Provider
- Enhanced Vehicle Positioning

Road Data Fusion
- Vehicle State Filter
- Frontal Object Perception
- Side/Rear Object Perception
- Lane Recognition
- Frontal Near Range Perception
- Recognition Unavoidable Crash
- VRUs Detection
- Free Space Detection
- Moving Object Classification
- Vehicle Trajectory Calculation
- Assignment of Objects-Lanes
- Road Edge Detection
- EVRP-ToRoad

EVRP: Ego Vehicle Relative Position
VRU: Vulnerable Road User
V2X: Vehicle to Vehicle or Vehicle to Infrastructure

Perception Horizon

CAN line (to application PC)

Digital Map
GPS
Odometer Gyroscope
Vehicle sensors
Camera
Lidar
Radar
Ultrasonic
V2X Nodes
Temperature/Rain sensor
Functional architecture
Perception Horizon

- Output interface of the perception platform
- Union of the following three elements:
 - **Synchronized subset** of the perception modules outputs
 - **Configuration files** for each demonstrator vehicle (available sensors, mounting position etc.)
 - **Output manager functionality** (software module translating Perception Horizon data to the communication line between perception platform and applications + diagnostics + logging)

✔ Modular handling - avoiding duplicate structures
✔ Minimization of low - level passing through information
Perception Modules (1 - the road around)
Perception Modules (2 - the objects around)

- Lidar
- V2X Nodes
- Radar
- Camera

Vehicle State Filter (VSF)

Assignment of Objects-Lanes (AOL)
Moving Object Classification (MOC)

Frontal Object Perception (FOP)

Side/Rear Object Perception (SRP)

Assignment of Objects-Lanes (AOL)

October, 26 2012 – 19th ITS World Congress
Perception Modules (2 - the objects around)

- 1st video: LRR radar/camera object fusion approach

(highway scenario)
Perception Modules (2 - the objects around)

- 2nd video: Radar/Lidar/Vision fusion approach inc. object classification

(highway scenario)
Perception Modules (3 - the ego + the objects in the road)
Process/Fusion algorithms (maps, radar, lidar, camera):

- Multi-sensor tracking in sensor networks
- Maintenance of Track ID at rear-side-frontal
- Instantaneous fusion using Evidential occupancy grids (Degrees of belief for detection, tracking and classification)
- Efficient object classifier for pedestrian, cars and trucks
- Robust Road Boundary Detection + Adv. Lane Tracking
- Frontal Near Range Perception for collision avoidance
Lessons learned and future work

- Need for hard real-time & multitasking environment for the implementation of the platform
- Reduce complexity, increase scalability and interoperability, allow multiple implementations
- Need for common agreed (standardized?) input/output structures
- Need for massive ground truth data covering all scenarios
- Dynamic maps with advanced attributes & enhanced accurate positioning

- Towards implementation in (distributed) embedded systems
- Plug & play concepts
- Early fusion or object level fusion?
- Global trackers & advanced world (environment & traffic) models
- New low cost high performance sensors & actuators
- Fault-tolerant perception architectures
- Need for verification-certification methods for perception
Thank you.

Dr. Angelos Amditis
Research Director,
Institute of Communication and
Computer Systems, Greece
a.amditis@iccs.gr