

www.interactlVe-ip.eu

Accident avoidance by active intervention for Intelligent Vehicles

D. Katzourakis, C. Olsson, N. Lazic, M. Lidberg

Nagoya, September 24, 2013

Presentation Outline

- Introduction
- DSO Strategy Objectives
- Description of DSO Strategies
- Results
- Conclusions

Introduction

- A Driver Steering Override (DSO) strategy evaluates the driver's interaction with the autonomous steering system and modulates accordingly the level of intervention.
- This paper evaluates two different DSO strategies.
- The paper focuses on one type of Lane Keeping Aid (LKA) system for prevention of undesired lane departures (using an EPAS).

Driver Steering Override (DSO) Strategy Objectives

- A DSO strategy needs to:
 - Assure system benefit whenever the LKA intervention is required, and also
 - Make the system behaviour consistent to a set of scenarios (e.g. driving on the outside of a curve and on straight roads)
-while:
 - Dealing with specific situations (curve cutting, obstacle avoidance involving lane departure).
 - Offering acceptable "steering feel".
 - Dealing with effects of autonomous steering due to faulty sensor data.

Description of Studied DSO Strategies

- The DSO-algorithm calculates a scaling factor (α).
- A torque saturation block is needed for scaling to have effect.
- *D_{int}* and curvature (*C*) is used to determine in- or outside of a curve.
- T_{tb} is measured torsion bar torque.

override

DSO Strategy - No. 2

- Similar "fundamental scaling".
- Added fade out functionality.
- Override scaling is given by:
 - $\alpha = \alpha_{SD} * \alpha_{FO}$
- Intervention logic is determined by 8 states distinguishing between (decision classes):
 - Inner our outer side of curve.
 - Driver is using *less* or *more* torque than expected to negotiate the curve.
 - Driver is *resisting* or *complies* with intervention.

Simulation Results

- Three different scenarios has been simulated in "Volvo Car's Traffic Simulator" in Matlab/Simulink (a 7DOF Volvo S60, non-linear tires, and sophisticated EPAS system model).
- One scenario is presented here where the driver is:
 - driving at the outside of a curve
 - resisting the intervention (i.e. steering outwards)
 - Driver is steering less than expected.
- No.2's state decision: scale down and fade-out the intervention (driver wants to steer outwards)

Simulation Results

- Figure compares the effects of:
 - No.1 vs.
 - No. 2 vs.
 - "no LKA"
- The main difference is due to the fade out logics (driver is resisting persistently).
- Strategy has clear impact on vehicle trajectory.

Experimental Data

Conclusions

- Both strategies cope with the DSO strategy objectives, manifested for example by:
 - Keeping the vehicle near the intended path when the driver is not "deliberately resisting".
 - Providing steering feedback without discontinuities during driver/system interactions
 - Handling specific situations like deliberate curve cutting etc.
- The override strategy has a decisive influence on the LKA benefits, depicting therefore the need for careful design and rigorous testing
 - Balancing between "performance" (No.1) and "comfort" (No. 2) is necessary.

Accident avoidance by active intervention for Intelligent Vehicles

www.interactlVe-ip?eu

Thank you.

Claes Olsson Technical Expert Active Safety Volvo Car Corporation

Tel. +46(0)723716751 claes.cb.olsson5@volvocars.com Co-funded and supported by the European Commission

SEVENTH FRAMEWORK PROGRAMME