

Accident avoidance by active intervention for Intelligent Vehicles

Fusion Framework for Moving-Object Classification

Omar Chavez, Trung-Dung Vu (UJF)
Trung-Dung Vu (UJF)
Olivier Aycard (UJF)
Fabio Tango (CRF)

Introduction

- Advance Driver Assistant Systems (ADAS) help drivers to perform complex driving tasks and avoid dangerous situations
- ADAS generally have three components: perception, reasoning & decision and control
- Perception provides, by processing sensor measurements, information of the environment the robot is immerse in
 - Simultaneous localization and mapping (SLAM) deals with modeling static parts
 - Detection and tracking moving objects (DATMO) is responsible for modeling dynamic parts

Frontal Object Perception Application

- Our work at interactIVe project aims at providing a reliable list of objects of interest using two modules:
 - Frontal Object Perception (FOP) delivers descriptions about relevant objects of interest (e.g.: location, speed) in the frontal area of the ego vehicle
 - Moving Object Classification (MOC) aims to provide estimated information about the class of moving objects detected by the FOP module
- An object could be categorized into different classes: pedestrian (or group of pedestrians), bike, car and truck

Sensor processing (1)

Target Detection:

- Segmentation based on lidar point clouds from several frames
- Taking into account spatial and temporal information (similar to optical flows technique)

Model-based tracking

- Better tracking result
- Able to estimate object geometry: updated over time from new observations
- Provide a likelihood of object class for moving objects (classes of moving objects are quite limited)

Sensor processing (2)

Train multiple binary-classifiers:

- One classifier for each view of object: pedestrian, car(rear, front), truck(rear, front)
- Sparse-HOG features: compact, fast to compute using integral image
- Learning method: Adaboost

Final classifiers:

Classification-based Detectors:

- Input: ROIs computed from Lidar Targets & Radar Targets
- Apply a classic sliding window strategy inside ROIs (not entire image): ~2ms/100 img patches

Fusion for Moving Object Classification

- Generic framework to fuse classification information from different sources (detector modules)
- Based on DS theory
 - Class information is represented as evidence masses
 - Manage conflict situations when evidence sources don't agree
- Takes into account the reliability of the sources and their precision to classify specific objects

Fusion for Moving Object Classification

• Set of possible class hypothesis per object $\Omega = \{car, truck, pedestrian, bike\}$

$$m(\emptyset) = 0;$$
 $m_r(A) = \sum_{B \cap C = A} m_b(B) m_c(C); A \neq \emptyset$
 $\sum_{A \subseteq \Omega} m(A) = 1$ $K = \sum_{B \cap C = \emptyset} m_b(B) m_c(C)$
 $m_r(\Omega) = m'_r(\Omega) + K$

 Instantaneous fusion: combine information from different sources at current time t.

applaying reliability factor

$$m_b(A) = r_{ab} \times m'_b(A); A \subseteq 2^{\Omega}, A \neq \Omega$$

$$m_b(\Omega) = m_b'(\Omega) + \sum_{A \in \mathcal{A}} (1 - r_{ab} \times m(A));$$

 $for A \subseteq 2^{\Omega}, A \neq \emptyset, A \neq \Omega$

weighting specific hypothesis

$$m_a(A_i) = m'_a(A_i) \times f_i; A_i \subseteq 2^{\Omega}, A_i \neq \emptyset$$

$$m_a(\Omega) = m'_{\Omega} + \sum_i (1 - f_i) \times m'_a(A_i);$$

 $for A_i \subseteq 2^{\Omega}, A_i \neq \emptyset, A_i \neq \Omega$

 Dynamic fusion: instantaneous result is combined with fused information at time t-1

Experiments

Setup

- Four class hypothesis: car, truck, pedestrian, bike
- Three different classification sources:
 - Vehicle detector, pedestrian detector and lidar-based detector
- CRF vehicle demonstrator includes three main sensors: radar, lidar and camera

 Reliability and precision factors are obtained experimentally using real datasets

Results

Frontal Object Perception

Trung-Dung Vu, Olivier Aycard

Université Joseph Fourier Grenoble, France

Contact: Olivier.Aycard@imag.fr

Results

Qualitative performance

Test track

Real scenarios

Results

Quantitative performance

Real time performance of FOP-MOC

Vehicle class Pedestrian class

Dataset	Lidar process- ing	Vehicle detector	Fusion approach	Dataset 	Lidar process- ing	Pedestrian de- tector	Fusion approach	
highway 1 highway 2	9	10	4	urban 1	10	8	5 3	
urban 1 urban 2	15 18	19 23	10 12	urban 2	13	1		

General performance

Scenarios	Total objects		Correct Detection		False Detection		Correct Classification			False Classification					
	ped	car	truck	ped	car	truck	ped	car	truck	ped	car	truck	ped	car	truck
Motorway	0	682	216	0	655	201	0	20	0	0	630	175	0	2	0
				n/a	96,0%	93,1%	n/a	2,9%	0%	n/a	92,4%	81,0%	n/a	0,3%	0,0%
Urban	33	525	87	27	495	72	4	0	0	26	483	63	5	4	5
				81,8%	94,3%	82,8%	12,1%	0,0%	0,0%	78,8%	92,0%	72,4%	15,2%	0,8%	5,7%
Test track	248	301	0	247	300	0	0	1	0	240	300	0	0	0	0
				99,6%	100%	n/a	0,0%	0,3%	n/a	96,8%	100%	n/a	0,0%	0,0%	n/a

Conclusions

- Fusion approach includes information about reliability of the sources and specific precision factors
- Architecture can be extended by including more detector modules
- Several class of objects involved
- Improves the performance of individual single sensor-based modules
- Provides a confidence value along the final object classification

interactive (i)

Accident avoidance by active intervention for Intelligent Vehicles

www.interactlVe-ip?eu

Thank you.

Co-funded and supported by the European Commission

SEVENTH FRAMEWORK PROGRAMME

