

## 20th ITS World Congress Tokyo 2013

# Automated Tool Chain for Evaluation of Real World Tests Developed and Applied in eCoMove and interactive

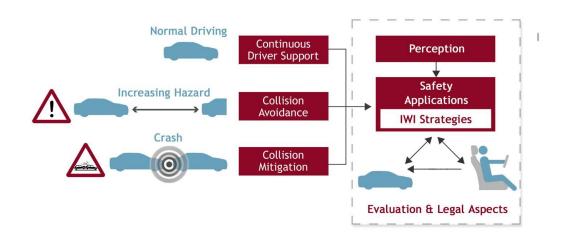
Tokyo, 14th – 18th October 2013

Felix Fahrenkrog, Philipp Themann, Lutz Eckstein

Institut für Kraftfahrzeuge RWTH Aachen University

## **Agenda**




- interactIVe and eCoMove project
- Requirements on the design of an evaluation tool
- Process flow & General Data structure
- Minimum set of measures
- Calculation of derived measures and indicators



# The interactIVe vision: Accident-free traffic and active safety systems in all vehicles

- Facts:
  - Duration: 48 months (January 2010 November 2013)
  - 29 partners of 10 countries
  - Budget: 30 Million € (Founding by the European Commission: 17 Million €)

- interactIVe systems:
  - SECONDS (Safety enhancement through continuous driver support)
  - INCA (Integrated collision avoidance and vehicle path control)
  - EMIC (Cost-efficient emergency intervention for collision mitigation)



#13xxxx · Slide Nr. 3 17.10.2013 © ika 2013 · All rights reserved



# 



#### **SECONDS**

- Continuous Support
- Curve Speed Control
- Enhanced Dynamic Pass Predictor
- Safe Cruise

#### **INCA**

- Lane Change Collis. Avoid.
- Oncoming Vehicle Collis. Avoidance/Mitigation
- Rear End Collis. Avoidance
- Side Impact Avoidance
- Run-off Road Prevention

#### **EMIC**

- Emergency Steer Assist
- Collision Mitigation

















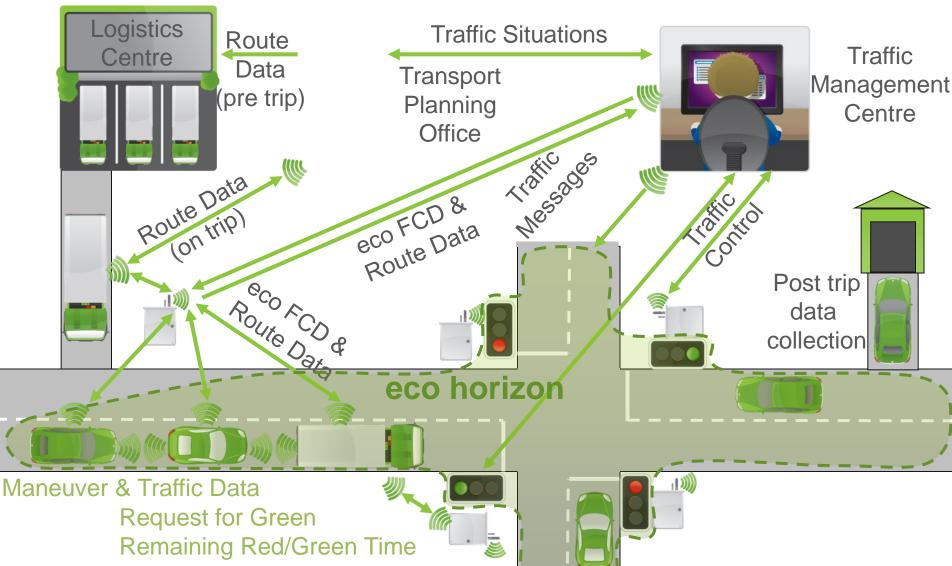


#### General facts:

- Duration: 44 months (March 2010 to November 2013)
- 31 partners from 10 countries
- Budget: 30 Million € (Funding by the European Commission: 17 Million €)



### Project aim:

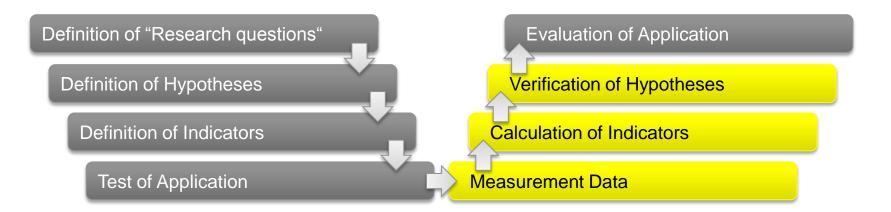

To develop a **combination of cooperative systems and tools** using V2V and V2I communication to help:

- drivers sustainably eliminate unnecessary fuel consumption;
- fleet managers manage their vehicles more economically and promote eco-driving through feedback & incentives;
- road operators balance traffic flows in the most energy efficient way.



## **\*eCoMove - cooperative network**






## **Evaluation Methodology**



- Although the scope of both projects and also the test design is different, the main steps for the evaluation of the test data are common
- Following scientific approach of evaluation of test data, as for example proposed by the FESTA or PReVAL methodology
- Step 0: System and function description
- Step 1: Expected impact and hypotheses
- Step 2: Test scenario definition

- Step 3: Evaluation method selection
- Step 4: Measurement plan
- Step 5: Test execution and analysis



## Why is a tool needed?



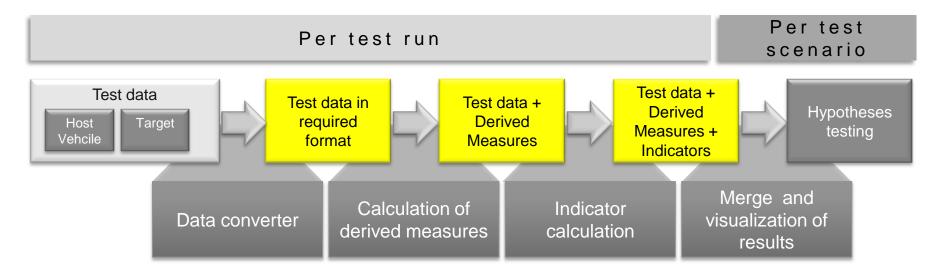
- Test and evaluation amount in interactIVe
  - 11 different functions in 7 demonstrator vehicles
  - Over 900 test runs of 8 different conflict types (e.g. rear-end)
  - 30 general hypotheses (relevant for all functions) and 63 specific hypotheses
- Test and evaluation amount in eCoMove
  - Simulations to evaluate the impact of traffic management strategies
  - Driving simulator studies
  - Test runs in the cooperative network of the City of Helmond with 4 passenger cars and 2 trucks





Automated evaluation is necessary!

# Requirements on the design of an evaluation tool




- Automated handling of test data puts several requirements on the tools to be developed.
- Especially the usage of the data structure within both projects must be defined carefully.
- The following requirements result from various discussions with the validation experts of the two projects eCoMove and interactIVe:
  - Flexibility with respect to data format of logged data
  - Flexibility with respect to measures considered and indicators derived
  - High processing performance
  - Automated and fast processing of huge amounts of test data
  - Automatic plotting of relevant data and storage of statistical data
  - Storage of indicators without connection of confidential data

#### **Process flow & General Data structure**



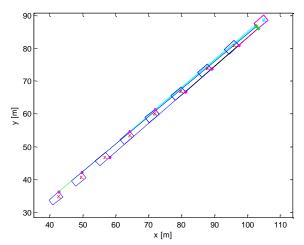
Evaluation tool is subdivided into different modules

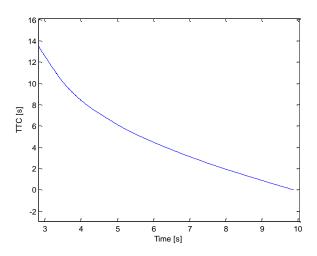


- Evaluation tool is implemented in MATLAB
- The structure clusters logged data as well as derived data in four main categories, which are:
  - **General:** includes a description of the test case
  - **Signal:** includes all logged signals of the test run
  - **DerivedMeasures:** includes all base on the signals calculated derived measures
  - **Indicators:** includes all based on the signals and derived measures calculated indicators

### Minimum set of measures

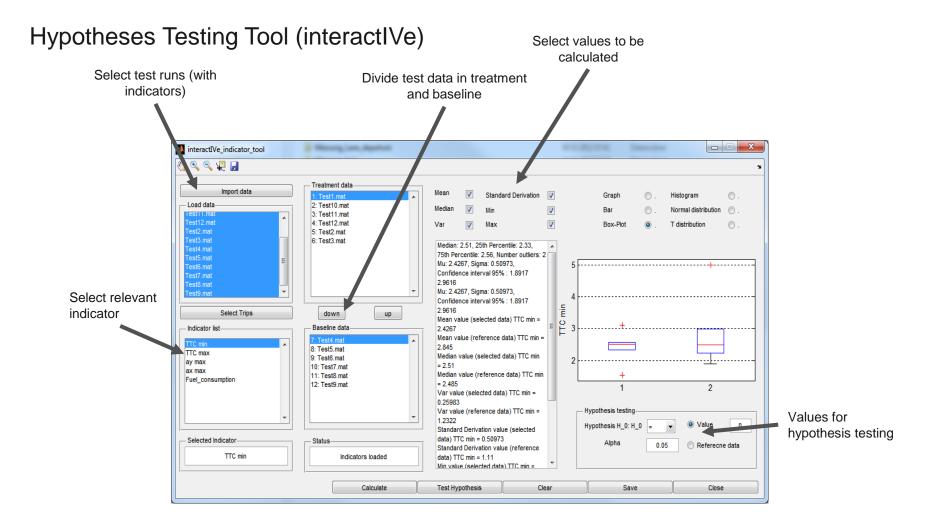



 For the evaluation a standard set of measures to be logged in the test runs has been agreed


| Measurement Name                                                                    | Unit or data format                              | Logging frequency | eCoMove | interactIve |
|-------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|---------|-------------|
|                                                                                     | Examples of common measures                      | S                 |         |             |
| Vehicle movement related measures                                                   |                                                  |                   |         |             |
| Vehicle speed                                                                       | km/h                                             | 10 Hz             | X       | X           |
| Longitudinal acceleration                                                           | m/s <sup>2</sup>                                 | 10 Hz             | X       | X           |
| Lateral acceleration                                                                | m/s <sup>2</sup>                                 | 10 Hz             | X       | X           |
| GPS position (lat /long)                                                            | 0                                                | 10 Hz             | X       | X           |
| Distance driven                                                                     | m                                                | 10 Hz             | X       | X           |
|                                                                                     | Driver input related measures                    |                   |         |             |
| Gas pedal position                                                                  | % [0 (= not pressed) to 100 (=fully pressed)]    | 10 Hz             | х       | х           |
| Brake pedal position or status                                                      | % [0 (= not pressed) to 100 (=fully pressed)]    | 10 Hz             | X       | X           |
| Gear usage                                                                          | Integer representing different stati             | Event             | X       | X           |
|                                                                                     | Function related measures                        |                   |         |             |
| System ON or OFF                                                                    | Integer representing different stati             | Event             | х       | х           |
| Engine related measures                                                             |                                                  |                   | •       |             |
| Engine speed                                                                        | 1/min                                            | 10 Hz             | х       | X           |
| Target object related measures                                                      |                                                  |                   | -       |             |
| Distance to vehicle in front                                                        | m                                                | 10 Hz             | X       | X           |
| Absolute velocity of vehicle in front                                               | m/s                                              | 10 Hz             | Х       | X           |
|                                                                                     | Examples of project specific meas                | ures              |         |             |
| Vehicle air conditioning status: on / off                                           | Byte representation                              | Event             | X       |             |
| windows status: open /close                                                         | Byte representation                              | Event             | X       |             |
| Accumulated Fuel consumption per vehicle                                            | litres                                           | 10 Hz             | х       |             |
| Clutch position or status                                                           | % [0 (= not pressed) to 100<br>(=fully pressed)] | Event             | х       |             |
| Engine torque                                                                       | Nm                                               | 10 Hz             | х       |             |
| Trip Active: to identify the duration of a trip (to exclude standstills and pauses) | Integer representing different<br>stati          | Event             | х       |             |
| Status Brake Light                                                                  | Byte representation                              | 10 Hz             | 1       | х           |
| Distance to lane marking                                                            | m                                                | 10 Hz             |         | X           |
| Yaw Rate                                                                            | Rad/s                                            | 10 Hz             | 1       | X           |
| Steering wheel angle                                                                | 0                                                | 10 Hz             | 1       | X           |
| G                                                                                   |                                                  |                   | 1       |             |

# Calculation of derived measures and indicators




- Derived measures
  - Derived measures are signals, which cannot be directly obtained from the measurement files, because the signals are not available
  - Examples TTC, TLC
- Indicators
  - Indicators are quantitative or qualitative single values which characterise the test run
  - Indicators are required in order to test the hypothesis and must be chosen according to the analysed hypothesis
  - Examples: Minimum TTC, Average fuel consumption
- Calculation scripts for derived measures and indicators are available in a library and can be chosen according to the evaluation question





## Implementation of tool





### Conclusion



- Automated Tool Chain for Evaluation of Real World Tests
- Applied in two European projects interactIVe and eCoMove
- Common data structure for the evaluation in both project
- Tool implemented in MATLAB
- Library for indicator and derived measure calculation scripts

### Contact



Dipl.-Ing. Felix Fahrenkrog

Institut für Kraftfahrzeuge RWTH Aachen University Steinbachstraße 7 52074 Aachen Germany

Phone +49 241 80 25627 Fax +49 241 80 22147

Email fahrenkrog@ika.rwth-aachen.de Internet www.ika.rwth-aachen.de