

www.interactlVe-ip.eu

Accident avoidance by active intervention for Intelligent Vehicles

Grant Grubb interactIVe Summer School 4-6 July, 2012

Agenda

- Introduction to Commercial Vehicle Sensor Data Fusion
- Challenges Developing for Commercial Vehicles
- Production SDF Applications Examples
- Research SDF Applications Examples
- Lessons Learned and the Future

Introduction to Commercial Vehicle Sensor Data Fusion

- Data fusion in the context of Advanced Driver Assistance Systems (ADAS)
 - Perceiving the environment around a vehicle
- ADAS are systems that support the driver in their task, for increased:
 - Safety
 - Efficiency
 - Comfort
- Examples:
 - Adaptive cruise control (comfort, safety, efficiency)
 - Lane change support (safety)
 - Collision warning (safety)

Introduction to Commercial Vehicle Sensor Data Fusion

- ADAS must be error free over millions of km of driving in many different environments
 - Places high demands on sensing the driving environment
- Why sensor data fusion?
 - Single sensor coverage limitations (range, field of view)
 - Complementary information (exploit different sensor properties)
 - Redundancy (increase reliability)
 - Object refinement (state estimation of entities)
 - Situation refinement (estimation inferred relations among entities)

Introduction to Commercial Vehicle Sensor Data Fusion

- One should differentiate commercial vehicles from passenger vehicles
- Many different types of commercial vehicles:
 - Trucks (long haul, distribution, rigid, tractor-trailer, double)
 - Busses (city, coach)
 - Construction equipment

interact_{IV}e 😥

Agenda

- Introduction to Commercial Vehicle Sensor Data Fusion
- Challenges Developing for Commercial Vehicles
- Production SDF Applications Examples
- Research SDF Applications Examples
- Lessons Learned and the Future

Challenges Developing for Commercial Vehicles

- Professional drivers have different expectations to that of passenger vehicles
 - \rightarrow Drivers spend longer in vehicle
 - \rightarrow Different visibility constraints
- Many different vehicle configurations
 - \rightarrow Large variation in sensor set to cover required zones
 - →OEM usually does not manufacture cargo trailers/containers
- Suspension of vehicle/cabin is different to passenger vehicle
 - \rightarrow Sensor performance varies depending on mounting points
 - →Cannot simply carry over ADAS systems between car and commercial vehicle
- Vehicles typically fleet owned rather than personally

→Direct link to cost must be apparent (eg safety saves money)

Agenda

- Introduction to Commercial Vehicle Sensor Data Fusion
- Challenges Developing for Commercial Vehicles
- Production SDF Applications Examples
- Research SDF Applications Examples
- Lessons Learned and the Future

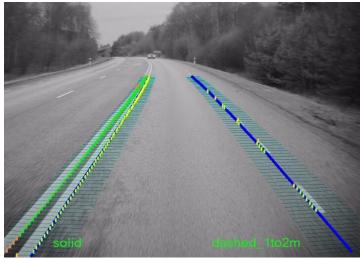
Production SDF Applications

- Applications typically only:
 - Warn the driver
 - Perform gentle vehicle control
 - Function in simplified environments (eg highway)
 - Limited speed range
- Applications are usually developed from sensor systems dedicated to that specific application
 - Minimal sharing of sensor data between applications
 - Additional functions usually require additional sensors

Production SDF Applications - Examples

Adaptive Cruise Control

- Fusing:
 - Radar (77GHz LRR)
 - Ego vehicle dynamics (velocity and yaw rate)

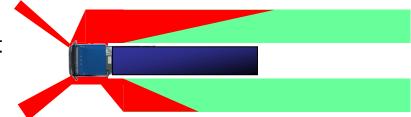

Production SDF Applications - Examples

Lane Departure Warning and Driver Alert Support

- Lane Departure Warning: warn when moving out of lane
- Driver Alert Support: warn when driver is perceived to be tired

• Fusing:

- Lane position from camera systems
- Ego vehicle dynamics (velocity, yaw rate steering angle, indicators)



Production SDF Applications - Examples

Lane Change Support

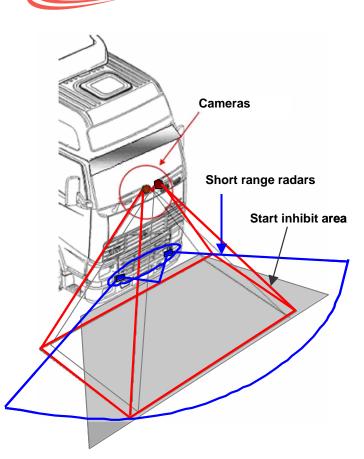
- Surveillance of blind spot areas to assist when changing lanes
- Fusing:
 - Short range radar
 - Ego vehicle dynamics

Summer School 4 - 6 July 2012

Agenda

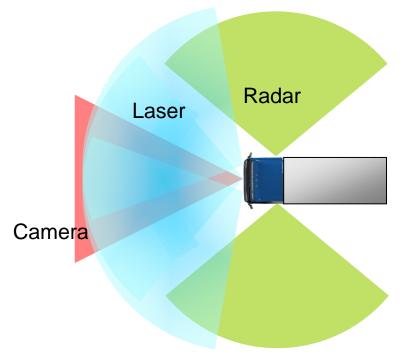
- Introduction to Commercial Vehicle Sensor Data Fusion
- Challenges Developing for Commercial Vehicles
- Production SDF Applications Examples
- Research SDF Applications Examples
- Lessons Learned and the Future

Research SDF Applications


- Applications which have a higher level of intervention
 - SteeringHard braking
 - \succ Requires higher reliability and confidence from perception!
- Address a wider range of scenarios
 - Full speed range
 - More complex environments (eg. urban)
- More complete environment representation. Fusing:
 - Radar, camera, lidar, V2X, eHorizon, ego vehicle dynamcis
- Shared fused representation between different ADAS functions

Start Inhibit Functions (PReVENT EU FP6)

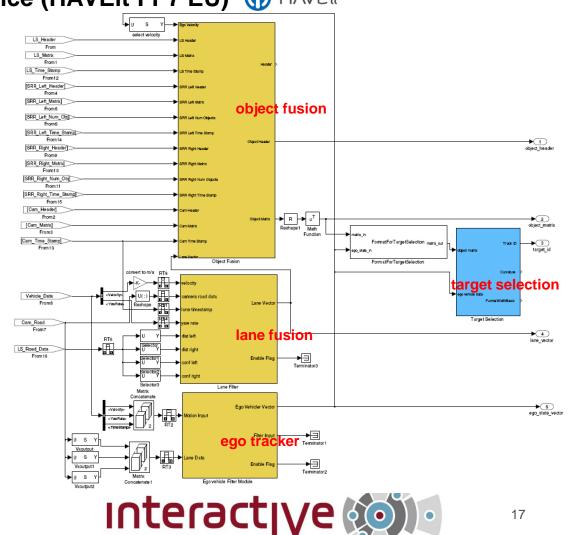
- 2004-2007
- Detection of VRU in the blind zone ahead
- Ignore driver start requests when VRU is present
- Fusing:
 - Stereo vision system
 - Short range radar (24 GHz)


a PReVENT Project

interact_{IV}e 😥

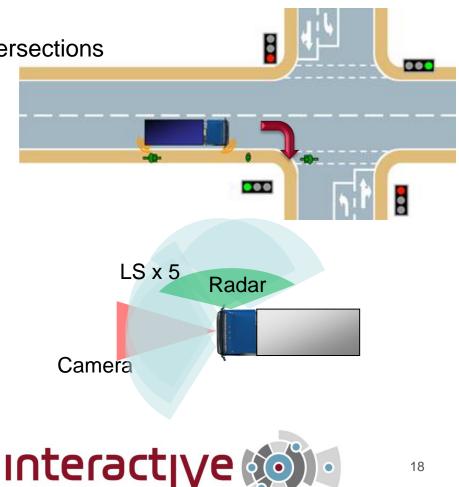
Automated Queue Assistance (HAVEit FP7 EU) () HAVEit

- 2008-2011
- Low Speed ACC + Stop & Go + Lateral Control
- Fusing
 - 3 x Laser (110°, 200m range)
 - Camera (54°, 60m range)
 - 2 x Radar (110°, 8m range)

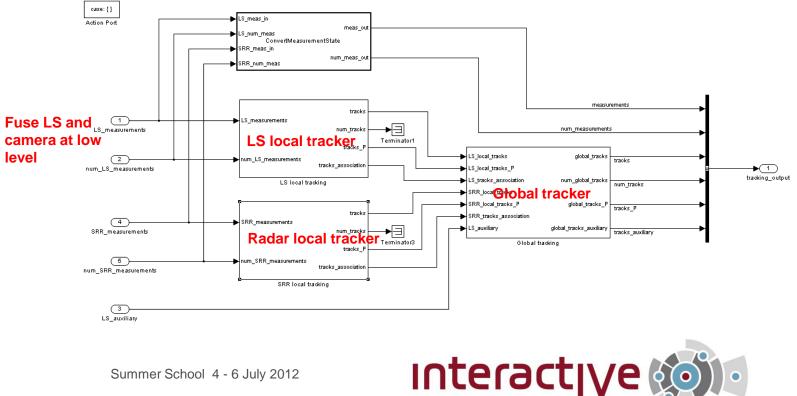


interact_{IV}e 😥

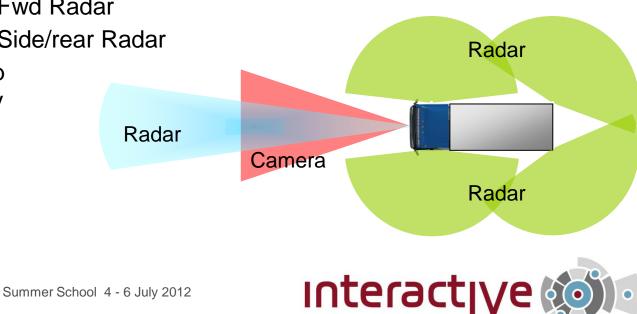
Automated Queue Assistance (HAVEit FP7 EU) () HAVEit


- Track-to-track object
 fusion LS + cam + radar
- Lane fusion from camera + LS
- Implemented in Simulink with C++, on xPC real-time workshop

Right-turn Assistance (Intersafe-2 FP7 EU) INTER SAFE2

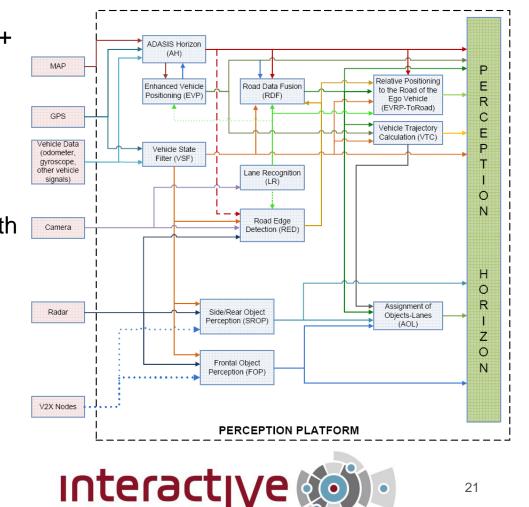

- 2008-2011
- Detection of VRU in right turns at intersections
- Fusing
 - 5 x Laser (110°, 200m range)
 - Radar (110°, 8m range)
 - Camera

Right-turn Assistance (Intersafe-2 FP7 EU) INTER S孫FE2


- Track-to-track object fusion
- Implemented in Simulink with embedded Matlab on xPC real-time workshop

Summer School 4 - 6 July 2012

interactive () **Collision Avoidance (InteractIVe FP7 EU)**


- 2010-2013
- Avoiding collisions via automated steering and braking
- Fusing
 - Camera
 - 1 x Fwd Radar
 - 4 x Side/rear Radar
 - Map
 - V2V

Collision Avoidance (InteractIVe FP7 EU)

 Object track fusion (front radar + side/rear radar)

- Lane fusion (camera + map)
- Road edge fusion (camera + radar + map)
- Implemented in ADTF (C++) with Windows XP

interact_{IV}e ()

Platooning (SARTRE FP7 EU)

- 2009-2012
- Vehicle platooning for fuel efficiency, safety, and comfort
- Multiple vehicles with different sensors
- Following truck fuses:
 - Stereo vision
 - Radar
 - V2V
- Track-to-track object fusion

Agenda

- Introduction to Commercial Vehicle Sensor Data Fusion
- Challenges Developing for Commercial Vehicles
- Production SDF Applications Examples
- Research SDF Applications Examples
- Lessons Learned and the Future

Lessons Learned and the Future

- Standardising fusion development platforms
 - Selecting a development platform that works in research projects <u>and</u> for product development
- Generic fusion (plug and play)
 - Exchange sensors with minimal fusion changes
 - Architecture which supports PnP
 - Common interfaces
- Integrated perception
 - Perception of entire vehicle environment

Lessons Learned and the Future

- Better utilisation of V2X
 - Provides more information than traditional sensors
 - But still not exploited fully in fusion systems
- Legislation for AEBS and LDW for HGV 2013/2015

Conclusions

- Fusion is an important aspect of automotive ADAS!
 - The demands from ADAS systems towards perception are high
 - We can only achieve this through a fusion of different sensors
- Perception is today the limiting factor in providing ADAS functions
 - Better fusion will improve perception

Accident avoidance by active intervention for Intelligent Vehicles

www.interactive-ip:eu

Thank you.

Co-funded and supported by the European Commission

SEVENTH FRAMEWORK

Grant Grubb Research Engineer Volvo Group Trucks Technology, Sweden grant.grubb@volvo.com +46 31 323 3818

