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Outline: Contents of the Presentation

From detection to tracking
Overview over camera based multi-target tracking systems
Association of measurements to tracks
Filters for different tracking systems
« Kalman Filter
« EKF, UKF
* Particle Filter
* IMM Filter
Models for camera-based tracking
3D backprojection measurement model
 Lane tracking models
« Traffic sign tracking model
* Pedestrian tracking model
 Vehicle tracking models
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From Detection to Tracking

Objective

* Follow objects over time

* Filter object trajectories

* Reduce failures and noise
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Structure of a camera-based Tracking System

Single frame :
R

* Input * Output
* Single frame  Object lists (“Track
recognition Lists®)
* Noisy * Estimated object
* No temporal states
connection
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Structure of a camera-based Tracking System

* System k-1 Tracksl,
« Measurement association .,

e Creation and deletion of
tracks

* Filter interaction

* Filtering ..
: : Measurements Assoclation
* Requires modeling of the

object motion and the
measurement process

* Motion extraction
* Noise reduction

Prediction

k Tracks I
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Association of Tracks to Measurements

* Input for classic
tracking filters is a
temporal list of
measurement
readings

* The measurements
must be assigned to
each filter / filter
element

L/
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Association of Tracks to Measurements

 Gating can be used to
reduce the number of
feasible association sets

* The expected / predicted
measurement innovation
covariance can be used
to determine the
association area (KF)
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Association of Tracks to Measurements

- Assign measurements to tracks based on
the postition / velocity / size

» Evaluate least overall distance / highest
probability of the association set

* Hard associations
« Assign one measurement to one track
* E.g. Global nearest neighbour / HM

» Soft associations

* Assign all measurementsinthe
environment with a certain probability

* E.g. PDA, JPDA and extensions

» Association based on a delayed decision
* Maintain a set of association hypothesis
* E.g. MHT and extensions

« Association using image cues
* Association based on feature similarity

» E.g. comparison of descriptor vectors
used for interest point tracking
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Filter Model

Objective
- Filter a set of temporal
measurement readings (z)

 Extract object state information (x)

Model
* Object evolves according to a

stochastic markov process
Xkl X1, s 1) = P(Xpe|XR-1)

« Stochastic measurement process

Solution

* Use a recursive Bayesian filter to
estimate the probability density of
x conditioned on all measurements

e EXxtract x
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Noise

Noise

Find p(xk|Zk)
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Tracking Filters for Linear Systems

« Kalman Filter

e Linear system and
measurement model

* Normally distributed
system and
measurement noise

* Normally distributed
state pdf

* Estimates mean and
covariance
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Xp = Fr_1Xp—1 +Br_1up_1 + qr_1

vie = Hpxp + rg

Normally distributed
random variable
Xpik—1 = Fr—1Xg_1jp—1 + Br_1uk_1
Pklk—l = Fk—lpk—llk—ng—l + Qr_1
Vi = HpX
Sk = HyPyp_HY + Ry,
Ky = Pu_1HL S,
Xplk = Xgj—1 + Ki(ye — V&)
Prpk = (I — KpHg)Prjg_1
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Tracking Filters for Linear Systems

 Fixed Gain Kalman Filter
« Simplification of the Kalman filter for constant noise and system
matrices
« Steady state gain is used to map measurement deviations to the state
space
* No propagation of the covariance matrix necessary
 Alpha-beta Filter
« Simplified KF with constant velocity model
« Simplified parameterization
* No covariance propagation
« Alpha-beta-gamma Filter
« Simplified KF with constant acceleration model
« Simplified parameterization
* No covariance propagation
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Tracking Filters for Linear Systems

* Alpha-beta filter * Alpha-beta-gamma
filter
1 2
ptzpt—l_l_vdt Pr=pr_1+vdt+§adt
[pklk 1‘ 1 dt Pk—1|k—1‘ Dk|k—1 -1 dt ldtz- Pr—1k-1
Ukik—1 Vk—1|k-1 Dijk—1| = 0 1 zdt Dk—1|k-1
[ﬁkw Pk|k 1‘ a(p Prli-1) Uik-1l o o Ak—1k-1
Vkk Uk|k—1 (P—ﬁk|k—1) B Bl g’(P Pklk-1) ]
lﬁklk] = lﬁklk_l + E(p _ pAklk—l)
a Apelk— Y A
el ket _W(P—Pkuc—ﬂ_

4 to 6 lines of code and the filter is ready
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Tracking Filters for Nonlinear Systems

Extended Kalman filter

* Normally distributed state
and noise pdfs

* Linearizes system and
measurement equations
around the mean estimate

* A relinearization around the
estimate can be used to
improve the results
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Tracking Filters for Nonlinear Systems

* Unscented Kalman filter

« Normally distributed
state and noise pdfs

* Propagates a small set
of sigma points through
the nonlinear function

* Better Covariance : N
estimates S >
 Higher calculation effort

(except for special
forms)

_________________
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Tracking Filters for Nonlinear Systems

* Particle filter

« General Bayesian filter

* Approximates the
probability densities using
a number of weighted
points in the state space

« Can be used for all kinds of
system and noise models

« Can be computationally
expensive

* Further Alternatives et

« GMM filters, Rao
blackwellized Kalman
filters, ...)
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Coupling of Several Hypotheses
The Interacting Multiple Model Filter

* Interacting Multiple Model Filter (IMM-Filter)
* Filter bank of filters with different properties
« Automatic probabilistic mode change

« Can be used for:
» Dynamic system noise adaption for maneuver situations
Model switching to switch to less complex models

 E.g. switching from a constant acceleration to a constant velocity
model

Model switching to avoid observability problems
Data fusion to fuse sensors with a small probability for false readings
High filter performance and robustness
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Coupling of Several Hypotheses
The Interacting Multiple Model Filter

Calculate

Probabilities
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Models for Camera Appliciations

2D Models
* Image plane motion

 Often constant velocity

or constant
acceleration model

* No direct relation to
real world motion

» Simple and fast
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* 3D models

* World motion model
Object specific
* Object type is known
* Ego motion
compensation

« velocity and yaw rate
data

* Projective
measurement model

* Requires camera
calibration data

Interactjyve de))- =



3D Measurement Model
Relation between 3D World and 2D Image Coordinates

* In a monocular camera, the distance information is lost
* For distance reconstruction, some constraints are needed

* Observed movement of stationary(!) points and ego motion estimation
(Slam) or use of sensor ego motion information

» Size observations and size constraints of objects
« Ground plane assumption
» Otherwise, the distance is unobservable!

 For vehicles, camera pitch should be taken into account in the model or
compensated
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3D Measurement Model
Relation between 3D World and 2D Image Coordinates

9 NN

Al WP

Y

TAT 4 ar

AY

Kinwe + Kipwy + Kizw. + K4 — The coefflc!ents_ of the .
Ti = —= E — - camera calibration matrix
Ksiw, + K 32Wy + Kagw. + Kay
completely capture the

Kojws. + Koswy, + Kosw. + Ko . .
Y = — 2y == = intrinsic and extrinsic

Ksiyw. + Ksow, + Kssw. + K.
31Waz + £32Wy + K33W2 + [134 parameters of the camera

Monocular Model-Based 3D Tracking of Rigid Objects: A Survey
Vincent Lepetit and Pascal Fua
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Ego Motion Compensation

Be
* Simple ego motion

model

» Uses velocity and yaw Vot
rate / steering angle

* Does not incldue the
sideslip angle
 No consideration of

dynamic effects (e.qg.
understeering or

1%
xe(t) = _ESin(ﬁoet) X Vel

oversteering) ve ’
Ye(t) = —= (1 = cos(@et)) = = Vepet?
Pe 2
ﬂe(t) = @et
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Examples for Motion Models: Lane Tracking

« Ground plane lane representation

« Second or third order
polynomial, e.g.

L N
f(x,l)=(gcll )+§cox +Px+Y; e

x=[cg ¢ B »Nn

e Derived from the clothoid
model

* Well known, simple model

Vul”

* Does not cover all types of

road geometry transitions
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Examples for Motion Models: Lane Marking Tracking

* Driving along the parabola with vt with a 3" order model yields the
following motion model

1 0 0 0 O 0
vt 1 0 0 0 X
1
5 (v t)? Vot 1 0 0 —tQ,
xk|k_1= 1 1 xk—1|k—1+ _lv t2
g(vet)z E(vet)z vt 1 0 2 ¢
1 1 1 {2
S @e)? S(e)? vt 0 1 T Vet
+Wk

Summer School 4 - 6 July 2012 I nte ra Ct Ive @’;@j ) o



Examples for Motion Models:
New Alternatives for Lane Tracking

* Spline description

_ fa(x, D)
* set of control points
* More flexible f3(x, 1)
geometry description
- Adjustable control fa( 1)
point density
- Needs careful modellig i D)

@
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Examples for Motion Models:
New Alternatives for Lane Tracking

| R —
* Spline tracker S
* The set of control points |
IS Included in the state
vector of a Kalman filter

* The control points are
shifted according to the
known ego-motion

* New points are added
on an extrapolated curve
In front of the vehicle

« Passed points are
removed behind the
vehicle
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Lane Tracking: Design Selections

 Parallel lane markings <lane marking tracking

In a single filter using a bank of filters
* More robust * Less robust
* Allows extraction of * More flexible
the pitch angle » Can model splitting
* Does not always and merging

match with reality

]

wou =
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Examples for Motion Models: Traffic Sign Tracking

 State is the position in 3D space

x=[x v 2T

* No target motion components
« Ego motion compensation motion model
e Size constraints can be used to refine the distance estimate

—Zy

i wos

¥
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Examples for Motion Models: Pedestrian Tracking

-
* Ground plane motion

 Constant velocity
target model

* Relative x-velocity
givenas v — v,

* Yaw rate given as —¢, \
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Examples for Motion Models:

» Ground-plane
motion model

* CT model with
Cartesian velocity
and known turn
rate (ego-motion)

* Size and ground-
plane constraints
can be used to give
rough distance
estimates
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Pedestrian Tracking
@D

!
N

— v 17T
x=[x x y ]
No target rotation component, model can be found in
Survey of Maneuvering Target Tracking.

Part I: Dynamic Models
X. Rong Li and Vesselin P. Jilkov
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Examples for Motion Models: Vehicle Tracking

CT Model with cartesian
velocity

* Ground plane motion model
using rotating cartesian velocity
vectors

« Target turn rate is a part of the
state vector

* Relative CT Model with constant
cartesian velocity

+ Rotation of the velocity
components

« Sometimes an extension with
constant acceleration is used

* Propose to be used within an
IMM estimator (with and
without turn-rate) to improve
filtering performance
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x=[x y x y o]’

/

Rotation component
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Examples for Motion Models

CT Model with polar velocity
* Ground plane motion model
» Taylor-expanded at phi=0 to
avoid a singularity
* Unobservable at v=0
« Sometimes an extension

with constant acceleration is
used

Observable dynamics and coordinate systems for
vehicle tracking
Richard Altendorfer

* Better performance

Used within an IMM
estimator to avoid
unobservability
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: Vehicle Tracking

R

x=[x y ¢ ¢ v|T
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Future Trends

Robustness will remain a topic for image processing
More exchange, interaction and fusion between several applications

Real-time capable 3D reconstruction and ego motion extraction on
embedded processors

Vehicles will form a complex hereogenous sensor network

* High delay communication with an environmental map over the
internet

» Low delay communication over C2C to nearby vehicles
 Fusion with different sensors on the host vehicle (Camera, Radar,
Gps, Map, Lidar, ...)
 Creation and update and upload of an environmental map
Autonomous driving
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