

FPGA-accelerated sliding window classifier with structured features

Ondřej Sychrovský, Martin Matoušek, Radim Šára {sychro1,xmatousm,sara}@cmp.felk.cvut.cz

Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague

CENTER FOR MACHINE PERCEPTION

Abstract

Certain classification tasks in computer vision require the classifier response to be computed in every pixel of an image. When combined with large, complex features, it becomes challenging to build such a classifier on a standard PC architecture and achieve real-time performance.

We present an FPGA implementation of a car wheel classifier response computation, built as an instantiation of a generic classification system. An interesting optimization problem concerning performance and speed is addressed. Our implementation is running in real-time as a part of a more complex collision mitigation system based on car detection in video data.

Motivation: The Wheel Detector

The input image, FPGA output – the classifier response map, response after spatial post-processing.

Classifier with Structured Features

Hardware Platform

- Xilinx Virtex-6 ML605 evaluation board
- Xillybus PCI Express wrapper

1. image patch normalization $\mathbf{S}_{x,y} = n(x,y) \cdot \mathbf{I}_{x,y}$ 2. dot product $d_i(x,y) = \langle \mathbf{S}_{x,y}, \mathbf{M}_i \rangle$ 3. weak classifier $v_i = \begin{cases} d_i & \text{if } \mathbf{M}_i \in \mathbb{R}^{w \times h} \\ |d_i| & \text{if } \mathbf{M}_i \in \mathbb{C}^{w \times h} \end{cases}$ $y_i = \begin{cases} +1 & \text{if } g_i v_i > t_i \\ -1 & \text{if } g_i v_i \le t_i \end{cases}$ 4. overall classifier response $r(\mathbf{S}_{x,y}) = \sum_{i=1}^{n} \alpha_i y_i$

The selected kernels \mathbf{M}_i , quantized to $\{-1, 0, +1\}$.

• AdaBoost learned

- 150 weak classifiers defined by \mathbf{M}_i (kernel), t_i (threshold), g_i (sign) and α_i (weight)
- 55 unique kernels (22 complex, 33 real) \rightarrow 77 dot products
- kernel (patch) size 25×29 pixels

Positive example:

Slice Selector	Slicing Scheme Optimization	Resource Consumption
$\begin{array}{c c} & & & & \\ \hline \end{array} \end{array} \\ \hline & & & \\ \hline \hline & & & \\ \hline \end{array} \end{array} \end{array} $	krnl 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 •	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
3). Each slice takes one clock cycle to process.	• all DPCBs have the same input, $\frac{23}{24}$ • a batch processes all slices that its $\frac{26}{25}$	overallper DPCBpatch sizeLUTsBRAMsDSPsLUTsBRAMs 9×15 1680367683691 15×19 265061111447312
Dot product-computing Block	$\begin{array}{c c} \hline 27 \\ \hline 29 \\ \hline 39 \\ \hline \end{array} \end{array}$ $\begin{array}{c c} \text{Minimize the total number of slices} \\ \hline \bullet \\ \hline \hline \bullet \hline \hline \hline \hline$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
input image $\frac{1}{2}$ "multiplication" adder tree $\frac{1}{2}$ n-adder dot dot	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Resource consumption for different image patch sizes with fixed number of 20 DPCBs.

Acknowledgement

This work was supported by the European Commission under interactIVe, a large scale integrated project, part of the FP7-ICT-246587 for Safety and Energy Efficiency in Mobility. The authors would like to thank all partners within interactIVe for their support.

FPL2013, Sept. 2–4, Porto, Portugal

Conclusions

We have proposed an approach for implementing a dense linear classifier on an FPGA. The proposed architecture is scalable and quite generic, it is up to the designer how many blocks are needed to place in the FPGA. The proposed wheel classifier response map computation is used in a car detector running in an intelligent vehicle as a part of a more complicated collision mitigation system [1], that requires processing cycle of 20–30 fps and a maximum latency of 200 ms.

References

[1] P. Heck, J. Bellin, M. Matoušek, S. Wonneberger, O. Sychrovský, R. Šára, and M. Maurer, "Collision mitigation for crossing traffic in urban scenarios," in Proc IEEE Intelligent Vehicles Symposium, 2013.

O. Sychrovský, M. Matoušek, and R. Šára, "FPGA-accelerated sliding window classifier with structured features," Center [2] for Machine Perception, Czech Technical University, Prague, Research Report CTU-CMP-2013-16, June 2013.