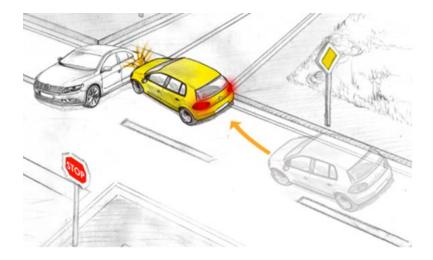


www.interactlVe-ip.eu

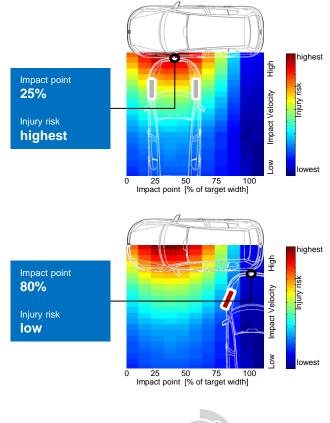

Accident avoidance by active intervention for Intelligent Vehicles

Activities within InteractIVe on Collision Mitigation for Crossing Traffic

P. Heck, S. Wonneberger, T. Wohllebe, E. Wykowski, M. Gonter Volkswagen AG R. Sara, M. Matousek ITS World Congress 26 October, 2012

Agenda

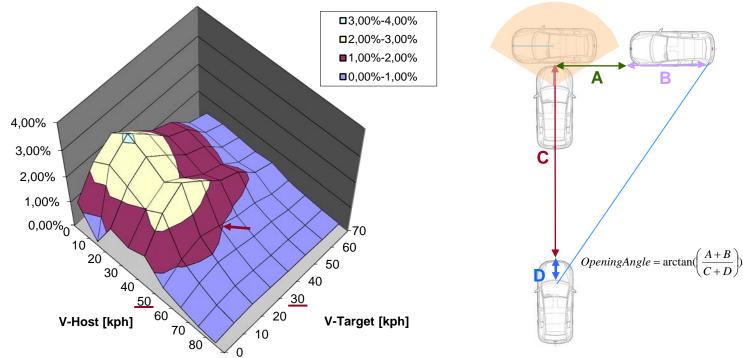
- Motivation and research needs
- Crossing Traffic Accident Analysis
- Detecting Crossing Traffic
 - Performance of Detection
- Action Concept for Collision Mitigation in Crossing Traffic
 - Capabilities and Achievements
- Summary


Motivation and research needs

Collision Mitigation for Crossing Traffic

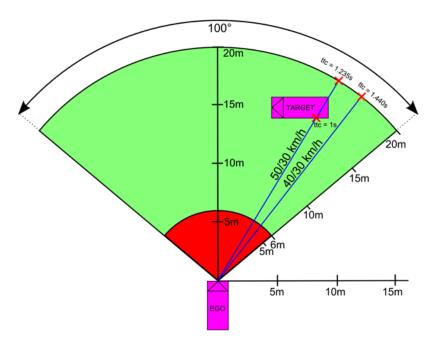
- Previous systems focus on warning and avoidance.
- Main goal within InteractIVe to prevent collision with the passenger compartment
- Requirements
 - Intervention time < 800ms
 - Deceleration up to 9m/s²
 - Required total accuracy lower than 50cm
 - Collision outside passenger compartment

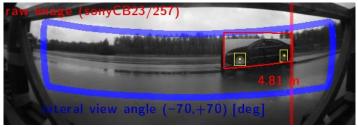
interactive


Action Concept for Collision Mitigation in Crossing Traffic

Initial collision	Targeted collision	Intervention type
Not a frontal Collision for host car (sidecollision)	No intervention	No intervention (this is not addressed by system)
Collision with front end	Right longitudinal Rail hits front wheel/axle	 Partial braking No Steering
Collision with front wheel/axle	No intervention due to high injury risk involved in possible resulting compartment collision	No intervention
Collision with compartment	Left longitudinal rail Hits rear wheel/axle	 Full braking Additional steering if required to produce lateral offset
Collision with rear end	Avoidance	 Full braking No steering

Crossing Traffic Accident Analysis


- Car vs. Car accidents in Germany
- Sensor FoV ≈100° and < 20m in range
- Resulting in ~0,25s-2s TTC detection capability with 64%* of all accidents covered (50kph Host, 30kph Target)

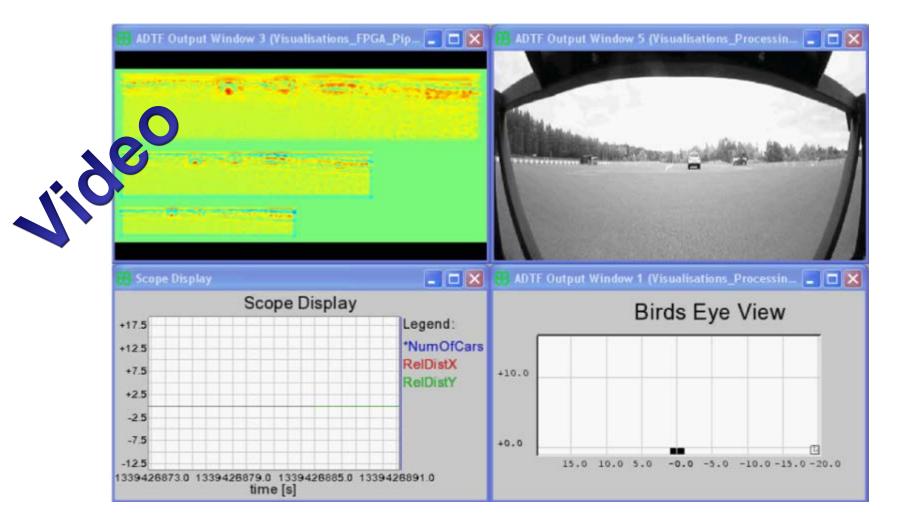


* Amount of vehicle-vs.-vehicle accidents in GIDAS database where the ego vehicle has a frontal collision..

Performance of Detection

Property	Value (now)	Value (target)	Precision $z = \frac{b}{d}f$
distance (Euclidean)	4.0 – 15m	\checkmark	±0.13m (std) at z=10m (plus ±5% for unknown true wheelbase)
angle	±50°	\checkmark	±0.2° (std)
output cycle	36ms	\checkmark	
latency	180ms	Lower deviation	±50ms

Technical Specifications of car detector:


part-based detector (now: wheels & wheelbase) distance estimate impact point estimate relative speed vector estimate trained on a large training set (CarSide 12k)

Future improvements

multiple frame tracking for speed estimation dynamic wheelbase estimation

Capabilities and Achievments so far

Summary

- Accidents at intersections remain a topic for continuing research.
- Collision mitigation in crossing traffic requires more knowledge of the situation compared to longitudinal traffic.
- Collision mitigation in crossing traffic needs to take into account effects of the automatic intervention on accident severity
- Within InteractIVe a system for a situational dependent automatic intervention in crossing traffic is being researched. This approach extends that of previous systems for crossing traffic avoidance with situational dependent braking and steering.

Accident avoidance by active intervention for Intelligent Vehicles

www.interactive-ip:eu

Thank you.

Co-funded and supported by the European Commission

SEVENTH FRAMEWORK

Philip Heck Volkswagen Group Research philip.heck@volkswagen.de

VOLKSWAGEN

10